Simple Containers for Simple Hypergraphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomly colouring simple hypergraphs

We study the problem of constructing a (near) random proper q-colouring of a simple k-uniform hypergraph with n vertices and maximum degree ∆. (Proper in that no edge is mono-coloured and simple in that two edges have maximum intersection of size one). We give conditions on q,∆ so that if these conditions are satisfied, Glauber dynamics will converge in O(n log n) time from a random (improper) ...

متن کامل

Randomly coloring simple hypergraphs

We study the problem of constructing a (near) uniform random proper q-coloring of a simple k-uniform hypergraph with n vertices and maximum degree ∆. (Proper in that no edge is mono-colored and simple in that two edges have maximum intersection of size one). We show that if for some α < 1 we have ∆ ≥ n and q ≥ ∆ then Glauber dynamics will become close to uniform in O(n log n) time from a random...

متن کامل

Coloring simple hypergraphs

Fix an integer k ≥ 3. A k-uniform hypergraph is simple if every two edges share at most one vertex. We prove that there is a constant c depending only on k such that every simple k-uniform hypergraph H with maximum degree ∆ has chromatic number satisfying χ(H) < c ( ∆ log ∆ ) 1 k−1 . This implies a classical result of Ajtai-Komlós-Pintz-Spencer-Szemerédi and its strengthening due to Duke-Lefman...

متن کامل

Decomposing Hypergraphs into Simple Hypertrees

Let T be a simple k-uniform hypertree with t edges. It is shown that if H is any k-uniform hypergraph with n vertices and with minimum degree at least n k−1 2k−1(k−1)! (1+o(1)), and the number of edges of H is a multiple of t then H has a T -decomposition. This result is asymptotically best possible for all simple hypertrees with at least two edges. Mathematics Subject Classification (1991): 05...

متن کامل

A Simple Regularization of Hypergraphs

We give a simple and natural construction of hypergraph regularization. It yields a short proof of a hypergraph regularity lemma. Consequently, as an example of its applications, we have a short self-contained proof of Szemerédi’s classic theorem on arithmetic progressions (1975) as well as its multidimensional extension by Furstenberg-Katznelson (1978).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Combinatorics, Probability and Computing

سال: 2015

ISSN: 0963-5483,1469-2163

DOI: 10.1017/s096354831500022x